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ABSTRACT 

Understanding reliability is critical in design, maintenance and durability analysis of 
engineering systems. A reliability simulation methodology is presented in this paper for vehicle 
fleets using limited data. The method can be used to estimate the reliability of non-repairable as 
well as repairable systems. It can optimally allocate, based on a target system reliability, 
individual component reliabilities using a multi-objective optimization algorithm. The algorithm 
establishes a Pareto front that can be used for optimal tradeoff between reliability and the 
associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and 
reliability as a function of time. The probability density functions (PDF) of the time between 
failures for all components of the system are estimated using either limited data or a user-
supplied MTBF (mean time between failures) and its coefficient of variation. The reliability-cost 
tradeoff analysis utilizes a user-supplied relationship between reliability and cost for each 
component. The tradeoff can be used to optimally determine the reliability of each component in 
order to maximize the system reliability and simultaneously, minimize the acquisition and repair 
cost for the system. A detailed example highlights the methodology and demonstrates its main 
features.   

 
 

1. INTRODUCTION 

System reliability analysis is critical to design, preventive maintenance, availability and 
maintainability through time [1]. Better reliability is usually achieved through better design, 
better materials or improved manufacturing methods and usually results in an increase in cost. 
The designer (or the end-user) must take this tradeoff into consideration. In addition, system 
level reliability targets are usually provided and not the reliability targets of the individual 
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components. This leads us to the problem of assigning component level reliability targets based 
on system targets. This problem is referred to as reliability allocation. It is obvious that many 
combinations of component level reliabilities (designs) can lead to the same system level 
reliability. How do we select a design among these that best satisfies the end user requirements? 
End users are usually concerned with multiple attributes which constrain the design space and 
help us reduce the number of designs that meet the system reliability targets. Multiple attributes 
however, increase the computational cost of evaluating designs for fitness to find the optimal 
one. Optimization methods should be carefully chosen or modified to handle this additional 
burden. Finally, the methodology for component level reliability allocation should incorporate 
tradeoff preferences of the end user. It should either incorporate the end user’s utility function 
over the attributes or present him/her with a manageable number of designs from which the best 
one can be chosen based on their tradeoff behavior. 

Reliability-cost tradeoffs and component reliability allocation are important in system 
acquisition and logistics as well as in evaluating new technologies to meet performance targets. 
The particular application we consider in this paper is reliability-cost study for vehicle fleets. 
Reliability methods in engineering have existed for some time. Analytical methods include the 
classical first-order and second-order reliability methods (FORM [2], SORM [3, 4]), and multi-
point approximation methods [5]. Integrating reliability into a design problem has been studied 
under the umbrella term of reliability based design optimization (RBDO). The system is 
optimized subject to probabilistic constraints which ensure a small probability of violation [6, 7]. 
Optimization in RBDO is performed using either classical gradient based methods or heuristics 
like Genetic Algorithms [8]. Time dependence of reliability, is also critical to understanding the 
performance of real life engineering systems that exhibit degradation. Very few studies have 
investigated the interplay of reliability allocation in engineering design, time dependence of 
reliability and cost tradeoffs associated with increasing reliability. 

In this paper we implement our methodology on a series system. It is equally applicable 
to reparable as well as non-reparable systems. For demonstration purposes, we assume that a 
component failure mileage1 or time is a Beta distributed random variable [9]. This does not limit 
our discussion because the family of Beta distributions exhibits a lot of flexibility in modeling 
different types of distributions. For a given useful mileage, the mean value, standard deviation, 
failure counts and reliability of a component can be analytically obtained. However, the system 
reliability depends on the layout of the components, and may be generally estimated using 
Monte-Carlo Simulation (MCS). The unit cost of a component is assumed to exponentially 
depend on the mean time between failures (MTBF) while the coefficient of variation is assumed 
constant. 

The main contributions of this research are: the development of a methodology for multi-
objective optimization to enable reliability-cost tradeoffs and to decide target component 
reliability for a series system. The method can be extended to non-series system using fault tree 
analysis for example, to define system failure.  

 
  

                                                 

1 Mileage can be a better measure of “time” for systems that are not constantly in operation, such as a vehicle. 
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2.  MODEL DESCRIPTION 

2.1. Component Level Reliability Assignment 
 
       If the failure modes of a system are known, component level reliability maps directly to 
the system level reliability as shown in Figure 1. The number of ways component level reliability 
can be chosen (designs) for a system composed of a large number of components is very large. 
As shown in the figure, for Nc components, each having mic variants (subscript ic stands for 
component number), the set of all designs is a Cartesian product of sR ic

All '  where 

{ }ic
m

icicic
All ic

RRRR ,...,, 21∈  and ic
mic

R represents the reliability of the icm  variant of the icth 

component. Each of these designs can map to a system level reliability using the failure mode 
information embedded in the functional F, and the mapping is a surjection, i.e. for each feasible 
system level reliability target there is at least one design. However, more than one design can 
result in a given system reliability level. Therefore, the inverse problem of “given a system 
reliability target, allocate component level reliabilities” does not have a unique solution. As we 
will see later in the paper, the addition of the objective of cost helps us alleviate this issue. 
 

 
 

Figure 1. Mapping of component level reliabilities into system level reliability 
 
 

2.2 System Description  

Assume that there is a system of Nc components, which are numbered using iC = 1, 2, …, 
Nc. We also assume that this system is a series repairable system so that any failure in a 
component results in a system failure. The failed component can be replaced using a brand new 
component of the same make, as shown in Figure 2. 
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… …… …

 

 
Figure 2. A series system layout 

 
 
We further assume that the system begins service under similar operational conditions 

with all brand new components and the mileage 0M  set to zero. For a given system in service, 

when a component fails, we record the component ID iC and the odometer mileage reading 
( )

CijM for that component. The mileage between failures (TBF) is then equal to 

 
( ) ( ) ( )

CCC
1d

ijijij MMM −−= .         (1)

 . 
The failed component is then replaced with a brand new one and the system resumes its regular 
service. This procedure continues until the odometer mileage reading for the specific system 
reaches a given threshold value Mthreshold. Data acquisition for this system is then stopped. Figure 
3 shows our notation with the component ID dropped for simplicity.  

 

 
Figure 3. A sorted component failure odometer mileage readings 

 
In Equation (1) and Figure 3, j = 1, 2, …, L is the failure sequence number for the given 

component. L is the total number of component failures before and at the threshold value 
Mthreshold for the specified component in a system. M0 = 0 is the beginning odometer mileage 
reading and ML is the maximum component failure mileage odometer or timer reading, before 
the censoring mileage, Mthreshold.  Obviously, the recorded component failure data are right-
censored at the threshold mileage. 

The (L+1)st component to replace the malfunctioned Lth component does not fail at or 
before Mthreshold (surviving component) but would fail at the odometer mileage Mtailed beyond the 
threshold value Mthreshold if the data were not censored. The (L+1)st failure mileage of component 
iC  given by 

 

CCCC
)()()d()d( tailed1tailed iLiiLi MMMM −== +          (2) 

 

           dMtailed 

     dM1      …       dMj           …  dMs 
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is not known from the recorded component failure data. Instead, the surviving component 
mileage can be retrieved as  

            
            

CC
)()d( thresholdS iLi MMM −=            (3) 

 
representing the used mileage/time of the (L+1)st component at the threshold mileage/time 
Mthreshold. 

 
Notice that there are cases that  
            

     thresholdS C
)d( MM i =                        (4) 

 
indicating that in the component data acquisition process, some components have no failure 
records at all. This missing information should be included in the surviving component data to 
make up a total of NSurvi = NC surviving components for a system. The first failure mileage of the 
system is defined and obtained as  

            
       ( ) ( )

CC 11f1 dminmin ii MMM ==                       (5) 

 
for iC = 1, 2, …, NC. 

 
This data acquisition procedure may be applied to a fleet of NS systems of the same make 

and model, or the simulation may be repeated for the same system NS times.  Then, the 
corresponding records S

C
)( i

ijM , S

C
)d( i

ijM  for component ic, are obtained and  

 

 ( ) ( ) ( ) S

C

S

C

S

11f1 dminmin i

i

i

i

i MMM ==                       (6) 

 
for iS = 1, 2, …, NS,  ic = 1, 2, …, Nc, and i = 1, 2, …, S

C
)( i

iL . It should be noted that a complete 

set of system failure data samples can be obtained from actual data or simulations.  
 
 

2.3 Data Sorting and Parameter Estimation 

The originally recorded component failure data are raw data that are usually in a random 
order and cannot be used directly. Therefore, they need to be sorted according to the priority 
order of the system or simulation number iS = 1, 2, …, NS =Nsim, followed by the component 
serial number iC = 1, 2, …, NC, and then by the failure sequence j = 1, 2, …, S

C
)( i

iL  . 

For a specified component of a specified system or simulation, the sorted component 
failure odometer mileage readings in ascending sequence, is given by     
             
                          threshold110 0 MMMMMM Ljj <<<<<<<= − LL  .                            (7) 
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Note that the component failure odometer mileage reading Mj is related to the component 
mileage between failures (TBF) as  

            

    1,,...,2,1 ford
1

+==∑
=

LLjMM
j

k
kj  .          (8)

 .  
We assume that the mileage between failures (TBF) of all components is a Beta 

distributed random variable of the same parameters [9-11]. The Beta distribution is used because 
of its flexibility to model a wide variety of probability distributions. In this case, 

            
   ( ) ( )0,0and,,,,,~d >>≤≤= qpBXAqpBAXM iii β          (9) 

 
The probability density function (PDF) of the Beta distribution is given by, 

            

   
( ) ( ) ( ) ( ) ( )

( )0,0and,                     

 ,,,, 1111

>>≤≤
−−− −+−−−

qpBxA

ABxBAxp,q=βqpBAxf qpqp

       (10) 

 
and its  cumulative distribution function (CDF) is 

            

    ( ) ( ) ( )∫ ∞−
=≤=

x

i tqpBAtfxXPxF d,,,, .        (11) 

 
In Equation (10), the Beta function ( )p,qβ  is associated with the Gamma function Γ as, 

            
     ( ) ( ) ( ) ( )p+qqΓp=p,qβ ΓΓ          (12) 

 
and appears as a normalization constant to ensure that the probability in Equation (11) integrates 
to unity when ∞→x . The standard Beta distributed random variable iY  is the special case of 

the general Beta distributed random variable iX  when 0=A  and 1=B ; i.e., 

            
             ( )qpYi ,,1,0~ β ,                     (13) 

 
where    

            
             ( ) ii YABAX −+= .          (14) 

 
In Equations (9-11, 14), A and B are the lower and upper bounds of the random variable 

iX  and p and q are the shape parameters. Figure 4 shows the probability density function (PDF) 

and the corresponding cumulative distribution function (CDF) of a component failure mileage 
for parameters A = 0, B = 45,000 miles, p = 3, and q = 5.  
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Figure 4.  PDF and CDF of a Beta distribution 

 
 
If we have a total of NF failure mileage data points xi, i = 1, 2, ... , NF the sample mean 

and the sample standard deviation are ∑
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AB
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−
−= µµ                       (15)  

and                 

     
AB −

= σσ ,                      (16) 

  
the method-of-moments provides the shape parameters p and q as [10],  
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 .                    (17) 

 
If A and B are known or if we have a good initial estimate with uncensored samples, the 

explicit form method of Equations (15-17) can be used to estimate p and q. It is difficult 
however, to have a good initial estimate of parameters A and B. Furthermore, the component 
failure data are usually heavily censored. In this case, the maximum likelihood estimation (MLE) 
method, which includes the NSurvi surviving mileage samples sj, j = 1, 2, ..., NSurvi for the 
component surviving mileages, can be used to estimate A, B, p, and q [12] by maximizing the 
following likelihood function,  
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Conversely, if the Beta parameters A, B, p, and q are available for a component, the mean 

valueµ , and standard deviation σ  can be calculated as,  
           

     
qp

p
ABA

+
−+= )(µ           (19) 

 
and            

            

     
1

)(

+++
−=

qp

pq

qp

ABσ .         (20) 

 
A coefficient of variation COV can be then defined as 

            

         
µ
σ=COV .          (21)  

 
The mean valueµ , the coefficient of variation COV, and the maximum possible failure 

mileage B are more physically meaningful than the Beta parameters A, B, p, and q, and therefore, 
are preferred in our discussions in the remainder of the paper.   

 
2.4 System Reliability Simulation 

A system reliability simulation evaluates the system reliability with respect to mileage. In 
a continuous case, the non-repairable system failure rate is defined as  

            

      ( ) ( )
( )

( )
( )tF

tf

tR

tf
t

−
==

1
λ          (22) 

 
where ( )tf  is the probability density function (PDF) of the time to system failure and ( )tF  is the 
cumulative distribution function (CDF) of the time to system failures, calculated by 

            

          ( ) ( ) ttftF
t

d∫ ∞−
= .                     (23) 

 
The system reliability ( )tR  is given by 

            
           ( ) ( )tFtR −= 1 .                     (24) 
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Let all simulated failure data being distributed over m bins of a constant width t∆  
representing mileage (Figure 5). The total number of failures over the m bins is 
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Figure 5. Histogram of failure data 
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and the PDF and CDF values corresponding to bin i  are 
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and  
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respectively. The failure rate for bin i is then provided by  
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and the cumulative failure rate is  
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The system reliability is then estimated by 

            

     ∑
−

=

−=−=
1

1 f

f
11

i

j
ii N

N
FR i          (30) 

or equivalently by 
            

              iH
i eR −= .          (31) 

 
It should be noted that Equations (22) to (31) are valid for non-repairable systems (first 

failure problem). However, they can also provide an approximation of the reliability for 
repairable systems as well. In this paper, we use quotes for terms as “PDF”, “CDF” or 
“reliability,” as a reminder that the corresponding quantities are approximate for repairable 
systems. Our notation for the first failure problem, is changed to 

i
N1f  for 

i
N f , 1fN  for fN , if1  

for if , iF1  for iF , i1λ  for iλ , iH1  for iH , and iR1  for iR . 

  
 

2.5 Reliability-Cost Pareto Front 

A Pareto front represents the tradeoffs that must be made in a design-decision problem 
among multiple objectives (attributes) indicating that improving all attributes simultaneously is 
not possible. The Pareto front in this study presents tradeoffs between reliability and cost. Its 
shape gives information on how much additional cost is needed to increase the system reliability 
by a specified amount. Figure 6 illustrates the shape of the Pareto front for a hypothetical system. 
The ideal case is to simultaneously increase reliability and reduce cost. The utopia point provides 
the best such scenario but it is not always attainable. The Pareto front separates the reliability-
cost domain into infeasible and feasible sub-domains and provides the most efficient tradeoff 
strategy. 
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Figure 6. Pareto front between system reliability and associated cost for a hypothetical 

system 
 
In this paper, a heuristic multi-objective optimization strategy is used to estimate the 

Pareto front between reliability and the associated cost. To initialize, random points in the design 
space are generated, evaluated and mapped into the Cost-Reliability space. To efficiently obtain 
the Pareto front, we evaluate design points only within controlled local domains. Because these 
local domains are not known a priori, they can be determined adaptively if random points are 
evaluated one by one. The determination of the local domains in the design space is addressed 
later in the paper. For computational purposes, we discretize the reliability vertex by defining 
horizontal slices in the Cost-Reliability space. We then assume that the evaluated point with the 
minimum cost within a slice defines a vertex of the approximate Pareto front. The latter is 
assumed having one vertex per slice. 

Figure 7 helps illustrate the local domain and slicing scheme that maps a random design 
point x = (x1, x2, …) in one of the m - 1 (m = 6 in Figure 7) local domains to a (Cost, R) point in 
the Cost-Reliability space where m is the number of break points that divide the reliability range 
[0 1] into m-1 slices (local domains). A diamond marker is used to represent the vertex of the 
Pareto front and a circular point to represent other designs.   

We assume that only the inner m-3 slices, bounded by the reliability values paretoL and 
paretoU, are of equal thickness. The values of paretoL and paretoU are dynamically determined 
by the current minimum and maximum reliability values, Rmin and Rmax, respectively, among all 
evaluated designs (circular and diamond markers in Figure 7) that are mapped from the design 
space x into the Cost-Reliability space. 
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Figure 7.  A schematic diagram to illustrate slicing scheme for finding the approximate Pareto 
front 

 
Assuming that the evaluated points that correspond to Rmin and Rmax are always within the 

bottom and top slices respectively, the relation  
 

maxULmin RparetoparetoR <<<          (32)  

 
holds. We determine the paretoL and paretoU values from 
 

RR RparetoRpareto δδ −=+= maxUminL   and          (33) 

 
where Rδ  is  a prescribed small positive real number satisfying  
 

( )minmax2

1
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The thickness of the i th slice is then provided by 
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and the i th break point is determined by 
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Equations (32) to (36) determine the Pareto slices based on the current minimum and 

maximum reliability values, Rmin and Rmax, among all evaluated points. If the reliability of a new 
point is between the current Rmin or Rmax, the definition of Pareto slices remains the same; 
otherwise the Pareto slices are re-initialized. 

A number of local domains are defined in the design space so that a design point 
generated in the design space can be mapped onto a point in the Reliability-Cost performance 
space which is nearby the current Pareto front. In this case, the number of design points to be 
evaluated will be drastically reduced improving therefore, the computational effort. As seen in 
Figure 7, a local domain in the design space corresponds to only one slice in the Cost-Reliability 
space. The center point of the local domain in the design space corresponds to the vertex of the 
current Pareto front within the corresponding slice. Before any Pareto front vertex is calculated, 
we assume that each local domain in the design space covers the entire design space (global 
domain). As a Pareto front vertex is first calculated or updated during the algorithm, the center of 
the local domain in the design space is updated and the size of the local domain is reduced (e.g. 
by 15% or 20%). It should be noted that the computational effort to obtain the Pareto front will 
not be reduced until every slice contains at least one evaluated point. If a slice does not contain 
an evaluated point (calculated Pareto front vertex), the global domain serves as the 
corresponding local domain in the design space, and a generated random point in the global 
domain can be mapped onto any of the Pareto front slices reducing the probability of being 
mapped onto the slice with no point in it. In this case, we cannot efficiently use randomly 
selected design points to estimate all segments of the Pareto front. 

The algorithm to calculate the approximate Pareto front is described using the following 
steps. 

 
Step 1. Assign initial values. 
 ipoint=0; 
 Rmin=1; 
 Rmax=0; 
 paretoL =0.5; 
 paretoU =0.51; 

Size of ith local domain equals size of global domain for i = 1,…,m-1. The size of 
a local domain will be reduced to 20% of the global domain size for i = 2,…,m-2, 
and to 15% of the global domain size for i = 1,m-1, when a point in it is a mapped 
onto a Pareto front slice. 

The above initial values are assigned before any design point is evaluated because the 
conditions for initializing the Pareto front using Equations (32) to (34) cannot be checked and the 
local domains in the design space are not known a priori.  

After the first design point (ipoint = 1) is evaluated, the values of Rmin and Rmax are equal. 
After the second design point (ipoint = 2) is evaluated, the condition Rmin < Rmax  is satisfied if the 
reliabilities of the two points are different. After subsequent points are evaluated (ipoint > 3), the 
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condition Rmin < Rmax  can be guaranteed. Based on these observations, the robustness of the 
algorithm is enhanced by using Equations (35) to (36) with paretoL = 0.5 and paretoU = 0.51 if 
ipoint ≤ 3 to define the Pareto slices. Otherwise, the full initialization scheme of Equations (32) to 
(36) is used. 

 
Step 2. Find a new design point to be evaluated. 

Keep generating random points in the design space until a design point x falls in 
one of the m-1 local domains. Note that no design point is evaluated until it falls 
within one of the local domains. No reduction in computational effort is achieved 
until the size of all local domains is reduced from the original global domain size. 
 

Step 3. Evaluate the new design point. 
 Set ipoint= ipoint+1;  
 Evaluate x to obtain the (Cost, R) value. 
 

  Step 4. Update Rmin and Rmax. 
   If Rmin < R, then Rmin = R,   
   If Rmax >R; Rmax = R. 
 
  Step 5. Update the Pareto front. 
   If  ipoint ≤ 3, then:  
    Update the Pareto front using the newly added point ipoint; 
   Else If  ipoint > 3, then:  
    If Rmin < (paretoL – thickness), then: 
     paretoL = Rmin – δR;  (δR=0.05) 
                               Initialize the Pareto slices using Equations 35-36; 
     Update the Pareto front using all evaluated points. 
    Else If  Rmax < (paretoU + thickness), then: 
     paretoU = Rmax + δR; (δR=0.05) 
                               Initialize the Pareto slices using Equations 35-36; 
     Update the Pareto front using all evaluated points. 
    Else  
     Update the Pareto front using the newly added point ipoint. 
    End If 
   End If 
 
  Step 6. Stop if the algorithm converges; otherwise, go to Step 2.  

 
The diamond marker in Figure 7 indicates the point with the minimum cost value among 

all ipoint points within a slice. Therefore, the complete Pareto front is a polygon that connects the 
m-1 diamond markers.  The reliability-cost Pareto set needs the evaluations of both the system 
reliability and the system cost.  The system reliability is evaluated using Equation (30) or 
Equation (31). 
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2.6 Definition of Design Variables  

In Sections 2.2 and 2.3, we described how to use available data to estimate the 
probabilistic distribution (PDF) of time (or mileage) between failures (TBF) of each component 
in a system using the family of Beta distributions. The PDFs of all components are then used to 
estimate the system reliability using Monte Carlo simulation. The four parameters (A, B, p and q) 
needed to define a Beta distribution are usually estimated if we know the first four moments of 
the available data (mean, standard deviation, skewness and kurtosis). Such an estimation may not 
be accurate however, if we only have limited data. For this reason, we proposed an estimation of 
the Beta distribution parameters using only the mean and standard deviation (see Equations 15 to 
17). 

Because it is common in practice to describe component reliability using only the MTBF, 

we assume in this paper that the coefficient of variation µ
σ=COV  is constant, allowing us to 

calculate the standard deviation if we know the mean. We also assume that the factorB  where  

            
               MTBF//factor BBB == µ                     (37)  

is constant, resulting in  
            

     MTBFfactorfactor BBB == µ .         (38) 

  
In this case, Equations (15) to (17) or Equations (19) to (21) can be used to estimate the four 
parameters of the Beta distribution using only the MTBF. The latter will then be the only 
independent design variable for each component. 

  
 

2.7 Reliability-Cost Relation for Each Component 

In order to calculate the Pareto front as described in Section 2.5, we must know how 
component reliability and cost tradeoff. In this paper, we consider the following exponential 
relationship between component acquisition cost and its MTBF 

            
     )1MTBF/MTBF(

0
0 costcost −= ke          (39)  

 
where k is a cost growth constant which is used to account for different possible relationships 
between MTTF and cost. It is given by 

            
    )1MTBF/MTBF( /)cost/costln( 001 −=k .                              (40) 

 
In Equation (40), cost0 represents the unit cost to achieve a reliability provided by MTBF0, and 
cost1 represents the unit cost for MTBF1. It is clear that cost is an increasing function of the 
MTBF as shown in Figure 8. The relationship is used as an interpolation tool between different 
component variants, which in practice are discrete values of cost and the associated MTBF. 
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Although the chosen functional form is a good approximation, it does not limit our methodology. 
Other cost-MTBF relationships can be easily accommodated. 
 

MTBF0MTBF0 MTBF1

cost0

cost1

Unit Cost

MTBF
MTBF0MTBF0 MTBF1

cost0

cost1

Unit Cost

MTBF

 
 

Figure 8. Component cost versus MTBF 
 

 
Then, for a system of NC components, the system cost is provided by 
            

   [ ]∑
=

− +=
C

C

C

0

1

)1MTBF/MTBF(
0 counts)  failure1( costCost

N

i
i

ke .       (41) 

 
It should be noted that the failure count for each component in Equation (41) can be obtained for 
both a non-repairable system and a repairable system.  

 
 

3. EXAMPLE  
 
The approach presented in Section 2 for system cost-reliability simulation and Pareto 

front generation is demonstrated in this section using a mechanical system consisting of 15 
components that are serially connected. The times to failure for all components are statistically 
independent and Beta distributed. We consider the design of only components 7, 8, 9 and 10, 
assuming that we actually control their MTBF. Table 1 provides the component data for the 
system, including the nominal (subscript 0) mean time between failure, the coefficient of 
variation, the ratio of maximum failure time to the mean time between failures (Bfactor, in 
Equation 37), the nominal unit cost (cost of initial design - cost0, in Equations 39, 40), and the 
cost growth constant (k, in Equations 39, 40). 

 
                          Table 1. Component data for the mechanical system 
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Component 
Number 

Baseline MTBF in hours 
(MTBF0) 

Coefficient of 
Variation 

Bfactor Baseline cost 
(Cost0) 

k 

1 4076 0.3 3 $27,500.00 1 

2 15000 0.3 3 $7,000.00 1 

3 26510 0.3 3 $3,000.00 1 

4 40000 0.3 3 $5,000.00 1 

5 18000 0.3 3 $5,000.00 1 

6 8000 0.3 3 $500.00 1 

7 31809 0.3 3 $22,500.00 1 

8 9520 0.3 3 $30,000.00 1 

9 9713 0.3 3 $12,500.00 1 

10 2330 0.3 3 $20,000.00 1 

11 40000 0.3 3 $27,500.00 1 

12 8614 0.3 3 $1,000.00 1 

13 45000 0.3 3 $30,000.00 1 

14 20000 0.3 3 $3,000.00 1 

15 25000 0.3 3 $15,000.00 1 

 
 
A complete set of system failure data samples is obtained using simulation as described 

in Section 2.2. The system threshold time and truncated threshold time for the data collection are 
five and one times respectively, the minimum of the maximum failure times of all 15 
components. 

The time to first failure and all subsequent failure times up to the system threshold time 
are recorded for 4000 simulations and used for system reliability calculations based on Equations 
(25) to (31). The specified useful time for reliability calculations is 2500 hours. The component 
and system cost are calculated using Equations (39) to (41). The simulation results are presented 
below. 

Figure 9 shows the repairable system failure frequency distribution over 200 bins of a 
constant bin width of t∆ = 35 hours over the system truncated threshold time of 6990 hours. 
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Figure 9. Histogram of system failures  
 
Figure 10 shows the “PDF” using Equation (26) for both the repairable system failure 

data (f in the figure)  and the system first failure data (f1 in the figure), as well as the Beta 
distribution fitting of the repairable system failure data using the maximum likelihood approach 
of Equation (18). It should be noted that the “PDF” for a repairable system as calculated using 
Equation (26), is not a real PDF because the failure components are replaced with brand new 
ones after failure. It simply provides a measure of the frequency of failures for a repairable 
system.  

 
 

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

7.0E-04

8.0E-04

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Time (hours)

"P
D

F
"

f

f1
Beta PDF

 
 

Figure 10.  “PDF” comparison 
 
 
Figure 11 compares the repairable system failure rate λ  with the failure rate 1λ  using 

only first failure data. As expected, the failure rate of the non-repairable (first failure) system is 
higher than the failure rate of the repairable system. 
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Figure 11. System failure rate comparison 
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Figure 12 shows the cumulative distribution function (“CDF”) and the cumulative failure 

rates (H) using repairable system failure data (curves F and H) and the first failure system data 
(curves F1 and H1). The “CDF” curves F and F1 are calculated using Equation (27) and the 
cumulative failure rate curves H and H1 are calculated using Equation (29). As expected, the 
results are drastically different between the repairable and non-repairable systems.  
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Figure 12.  “CDF”/H comparison 
 
Figure 13 compares the reliabilities calculated by Equations (30) and (31). As expected, 

both equations provide the same reliability results. The RF (Equation 30) and RH (Equation 31) 
curves (repairable system) and the RF1 and RH1 curves (non-repairable system) are identical. 
However, the reliabilities are different between the repairable and non-repairable systems.  
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Figure 13.  System reliability comparison for repairable and non-repairable systems 
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Figure 14 shows the first failure count per system simulation for each component and 

Figure 15 shows the corresponding cost for each component from Equation (39). Although most 
of failures per system simulation are recorded for components 10 and 1 (Figure 14), the expected 
cost from all failures is high for components 1, 7, 8, 10, 11 and 13 (Figure 15). This is due to the 
relatively high component cost for components 1, 7, 8, 10, 11 and 13 (see Table 1). 
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Figure 14.  First failure counts for each component per system simulation 
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Figure 15. Total cost for each component per system simulation 
 

Finally, Figure 16 shows the cost versus system reliability Pareto front using first failure 
data. Among the 15 components, only components 7, 8, 9 and 10 are designed. A total of 250 
system design points were used to generate the Pareto front considering only 7 slices. The multi-
objective optimization strategy presented in Section 2.5 asymptotically approaches the Pareto 
front between reliability and associated cost. The Pareto front can be presented to the end user 
who can then select the best point on the front based on his/her tradeoff preferences. For each 
point on the Pareto front, we have an associated design in terms of target component level 
reliabilities and costs which would result in the given system reliability and cost.  

It is observed from Figure 16 that there is a high slope region where the reliability can be 
significantly increased with a small increase in cost. This indicates that we can increase the 
system reliability with a very small increase in cost.  
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Figure 16. System reliability-cost Pareto front 
 
 
 

4. SUMMARY AND CONCLUSIONS 

Reliability analysis is critical to understanding the design and maintainability of complex 
systems. In this paper a simulation based reliability-cost modeling capability was formulated and 
presented. The methodology accomplishes two things: 

1) System Reliability-Cost Simulation: The method uses the Probability Density Function 
(PDF) of the Time Between Failures (TBF) for each component of the system. The user supplies 
a MTBF and a Coefficient of Variation (COV) for each component, and the presented approach 
calculates the component PDFs/CDFs of the times between failure. Subsequently, a Monte Carlo 
simulation estimates the system failure rate,( )tλ , and the reliability, ( )tR , as a function of time. 
The number of failures for each component is also calculated and the associated cost to replace 
failed components. The latter is used to calculate the required cost for a desired reliability level. 

2) Generation of Reliability-Cost Tradeoff: A reliability-cost tradeoff analysis is 
performed using a user-supplied relationship between reliability and cost for each component. 
The reliability-cost tradeoff is used to optimally determine the reliability of each component in 
order to maximize the system reliability and simultaneously minimize the acquisition and repair 
cost for the system. A heuristic multi-objective optimization algorithm has been developed to 
calculate the Pareto front between reliability and associated cost.  

An example of a mechanical system of 15 serially connected components was used to 
illustrate the methodology. The example clearly highlighted the differences between repairable 
and non-repairable systems in terms of PDFs of time between failures, and failure rates. It also 
demonstrated how the proposed method can be used to efficiently generate the Pareto front for 
Reliability-Cost tradeoff, which the end user selects the best design from. Each point on the 
Pareto front is mapped to a target component-level reliability and cost which result in the given 
system level reliability and cost. 

The presented work can be easily extended to a general (not serial) system where a fault 
tree for example, can define the system failure. In this work, we assumed that the reliability-cost 
relationship is explicitly known. Future work can attempt to further understand this relationship 
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and accommodate the effect of uncertainty. Finally, the Pareto front analysis can be carried out 
using other than the reliability and cost attributes. 
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